Notation décimale Notation scientifique

Ordre de grandeur

Nombre	de	chiffres	significatifs
--------	----	----------	---------------

2 400	2,400×10 ³	<u>-</u>	10 ³
	7,8100×10²	4	
781,00	,,0100,10	5	10 ³
0,000 025 7	2,57×10 ⁻⁵	3	10 - 5
0,009 8	9,8×10 ⁻³	2	10 - 4

n	nano	x 10 ⁻⁹	× 0,000 000 001
μ	micro	× 10 ⁻⁶	× 0,000 001
m	milli	x 10 ⁻³	× 0,001
k	kilo	x 10 ³	× 1 000
M	méga	× 10 ⁶	× 1 000 000
G	giga	x 10 ⁹	× 1 000 000 000

Exemple : estimer l'ordre de grandeur du nombre d'entités de chacun des systèmes suivants :

• 2,5.10 - 3 mol d'ions contenus dans une solution $N = N_{A (enmol^{-1})} \times n_{(enmol)}$

AN: N = $6.02 \times 10^{23} \times 2.5 \times 10^{-3} \approx 6 \times 2.5 \times 10^{23-3} = 6 \times 5/2 \times 10^{20} = 15 \times 10^{20} = 1.5 \times 10^{21}$ L'ordre de grandeur est 10²¹

• 200 g de paraffine (qui constitue la matière solide d'une bougie)

$$N\!=\!N_{A~(enmol^{-1})}\!\! imes\!n_{(enmol)}$$
 et $n_{(enmol)}\!\!=\!\!rac{m_{(eng)}}{M_{(eng.\,mol^{-1})}}$

On a donc: $N = \frac{N_{A (en mol^{-1})} \times m_{(en g)}}{M_{(en g, mol^{-1})}}$

AN: N = $6.02 \times 10^{23} \times 200 / 320 \approx 6 \times 10^{23} \times 2 / 3 = 4 \times 10^{23}$ L'ordre de grandeur est 10^{23}

• 2L d'eau

$$\begin{split} N = N_{A~(enmol^{-1})} \times n_{(enmol)} & \text{ et } \quad n_{(enmol)} = \frac{m_{(eng)}}{M_{(eng.\,mol^{-1})}} & \text{ et } \quad m_{(eng)} = \rho_{(eng/L)} \times V_{(enL)} \\ \text{On a donc: } \quad N = \frac{N_{A~(en\,mol^{-1})} \times \rho_{(eng/L)} \times V_{(enL)}}{M_{(eng.\,mol^{-1})}} & \text{AN: N = 6,02\times10^{23}\times1000\times2~/~18~≈ 6~$\times2/18$~$\times10^{23}$~$\times1000 = 12/18$~$\times10^{26}$} \end{split}$$

L'ordre de grandeur est 10^{26}

texte sur la microscopie

1. Le phénomène qui limite la résolution des microscopes optiques est la diffraction, qui a lieu dès que l'obstacle est inférieur ou égal à la longueur d'onde.

Les longueurs d'onde visibles vont de 400 à 800 nm.

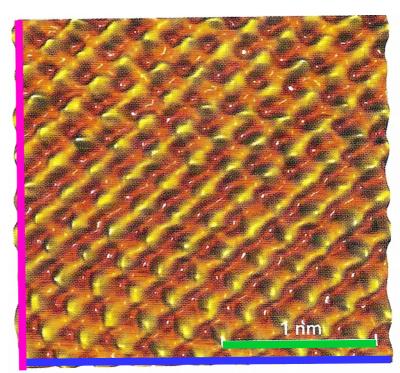
Donc, la limite de résolution de ces microscopies est de 800 nm.

- 2. Le texte parle des microscopes à effet tunnel et des microscopes à force atomique. Leur principe est différent, car on ne voit pas réellement la surface du matériau, mais on la reconstitue à partir de mesures (de courant électrique, par exemple). C'est donc une méthode indirecte.
- 3. La pointe est un élément qui détermine la résolution de ces microscopes.
- 4. Le laser permet de déterminer la hauteur de la pointe, grâce à un système de réflexion.
- 5. Comme expliqué en question 2, on ne voir pas réellement les atomes.

Etude de la figure

- 1. ce n'est pas la couleur des atomes, mais un couleur choisie lors de la reconstruction de l'image pour nous permettre d'avoir une impression de relief.
- 2.! Transposer les mesures à celles que vous mesurez sur votre feuille !

L'échelle est : 4 cm pour 1 nm


La figure est un carré de côté $8,6\,$ cm , ce qui correspond en réalité à $8,6/4*1=2,15\,$ nm

La surface est donc de $2,15*2,15 = 4,6 \text{ nm}^2$

$$Rq : 1nm = 10^{-9} m$$

donc:
$$1 \text{nm}^2 = (10^{-9})^2 \text{ m}^2 = 10^{-18} \text{ m}^2$$

3. On compte environ 120 ou 130 atomes sur la figure.

On a donc 120 atomes pour 4,6 nm², soit 4,6*10⁻¹⁸ m² soit : $120/(4,6*10^{-18}) = 26 \times 10^{18}$

L'ordre de grandeur est donc de 10^{19} atomes par m².

4. La surface occupée par atome est donc de l'ordre de $10^{-19} \,\mathrm{m}^2$.

Si on considère que l'atome a un rayon R, il occupe une surface $S = \pi R^2$

Le rayon atomique est donc : $R = \sqrt{\frac{S}{\pi}}$, soit : $R = \sqrt{\frac{10^{-19}}{\pi}} \approx \sqrt{10^{-19}} = 10^{\frac{-19}{2}} = 10^{-9.5}$

L'ordre de grandeur du rayon atomique est donc 10⁻¹⁰ m.